skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Salerno, Jennifer L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 1, 2026
  2. Water quality analysis of Philadelphia County surface waters have indicated that storm events alter the concentrations of pollutants such as polycyclic aromatic hydrocarbons (PAHs), antibiotics, heavy metals, and other pollutants, which could impact aquatic organisms' diversity as well as human health. However, there is limited knowledge regarding the microbial communities in these environments and their responses to these pollutants. To address this knowledge gap, culturing and analysis of genomes isolated from surface water samples was carried out at two different time points: one under average conditions (SW1) and another three days after a storm event (SW2). Colorimetric water quality assays were also employed to assess the levels of common pollutants in waterways and observe alterations in the relative concentrations of various chemicals in the Schuylkill River after storm events. Gram staining, and culture analysis of isolated colonies from surface waters in Philadelphia County waterways was performed to understand microbial diversity and the principles of bacterial identification. Genomic DNA was extracted from bacteria concentrated via filtration. PCR amplification of the 16s rRNA gene was performed in preparation for genomic sequencing. Genomic sequencing of samples from various waterways was performed and analyzed using bioinformatics software to identify microorganisms and classify taxa. The results demonstrate that storm events influence the diversity of microorganisms in the Delaware River Watershed. Further analysis of pollutant levels and the metagenomic data will be needed to further elucidate the correlation between specific pollutants and potential pathogens as well as the influence of said pollutants on microbial diversity. 
    more » « less